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Abstract

The potential of hand shape and hand texture-based biometry is investigated and algorithms are developed. Feature extraction stage is preceded

by meticulous registration of the deformable shape of the hand. Alternative features addressing hand shape and hand texture are compared.

Independent component analysis features prove to be the best performing in the identification and verification tasks. It is shown that hand

biometric devices can be built that perform reliably for a population of at least 1000.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Among a number of biometric techniques that are used for

frequent human identification tasks, hand shape and hand

shape-based biometry is an emerging new technique, with

certain advantages over the more established competitor

techniques. First, human hand data acquisition is less

cumbersome, user-friendlier. Furthermore, it is much less

susceptible to intrinsic variations and environmental artifacts

[1]. In contrast, fingerprint acquisition is usually associated

with criminal identification, and is therefore psychologically

disturbing. Iris and retinal scans require sophisticated,

expensive and more intrusive acquisition systems. Though

these alternative techniques have considerable discriminative

power, users may not be too keen employ them for daily access

control or verification in e-commerce applications. Systems

relying on human face or voice identification are more

established at present and seem user-friendlier, but suffer

from intra-class variations and background/noise elimination

problems. Pose, expression and illumination artifacts affect

face recognition, while voice recognition is prey to health and/

or emotional state of the speaker. However, both face and voice

recognition still remain as very active research areas. All in all,
0262-8856/$ - see front matter q 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2006.01.020

* Corresponding author. Tel.: C90 212 359 6414; fax: C90 212 287 2465.

E-mail addresses: yoruk.erdem@gmail.com (E. Yörük), dutagach@boun.
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hand-based identification/verification systems provide an

attractive and growing alternative biometric scheme [2].

There have been a number of previous studies investigating

hand-based biometry. Some of these schemes rely solely on

geometrical features, others use hand silhouette shape with or

without geometric features, still others use extracted palm print

lines, and finally there are approaches that combine palm lines

with hand shape.

Schemes that utilize geometrical features of the hand focus

on such characteristics as widths of fingers at articulations,

finger and palm lengths, finger deviations and the angles of the

inter-finger valleys with the horizontal [3–6]. The number of

features varied typically, in the range of 20–30, and the

acquisition styles also differed, in that some necessitate pegs to

position fingers while others were peg-free. These schemes

have the advantage that the features are local, and hence

accurate hand registration and normalization are not needed.

Oden et al. [7] used jointly finger shape information and

geometric features. The shape information of the individual

fingers (but not the whole hand) was extracted via implicit

polynomials and the geometric features were joined at the

feature fusion stage.

There is also increasing research on palm print-based

identification/verification systems. One challenging problem

with the palm print is the extraction of features such as line

structures from the palm print image. For that reason, most of

the proposed algorithms [8–10] require ink markings for

obtaining enhanced palm print images. On the other hand, Zhan

[8,11] uses a special scanning system to automatically extract

the palm curves from high-quality and well-aligned palm print
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images. The verification algorithm proposed by Han et al. [12]

does not require peg or ink usage, and the palm print features.

The extracted features via Sobel and morphological operators

are used with template matching and a back-propagation neural

network to determine palm print similarity between hands. In

Kong et al. [13], 2D Gabor filters are implemented to obtain

texture information and two palm print images are compared in

terms of their hamming distance.

It is possible to use both hand geometry and palm print

information. Kumar et al. [14] have proposed an approach

based on the integration of hand geometry features to hand-

based verification. They developed a system where the palm

gray level information is fused with the geometrical features of

the hand.

In this work, we propose a novel hand-based biometric

system. The originality of our work resides in two aspects. Our

first contribution is the development of a very accurate hand

normalization scheme, whereby hand images captured in

arbitrary postures are brought to standard finger orientations

and overall pose. Such a hand normalization allows the

consideration of global features and increases the capacity of

the system significantly, i.e. the size of the subject population

correctly identified. As a second contribution, we consider

global appearance-based features of the hands for identification

and verification tasks. Two of these features are data-driven

statistical features, such as principal component analysis and

independent component analysis features, and two of them are

general features, such as axial radial transform and distance

transform. We extract these features either from pure shape

information or from the hand texture plus shape information,

and we investigate their biometric impact. Finally, the size of

the enrollment in our work exceeds the populations used in the

literature by almost an order of magnitudes. As a byproduct, we

have analyzed the similarities between the right and left hands

of people, since we capture both of them.

The paper is organized as follows. In Section 2, the

segmentation of hand images from its background and the

various normalization steps for the deformable hand images are

given. Section 3 describes the features we extract from the

normalized hand silhouettes and textures. The experimental

set-up and the classification results are discussed in Section 4

and conclusions are drawn in Section 5.
2. Hand normalization

The normalization of hands is of paramount importance for

any verification and identification task. This is because the

difference between appearance-based features of a hand in

different postures, as in Fig. 1, by far exceeds the difference

between those features between hands belonging to different

subjects. The normalization task involves several consecutive

processing steps, namely, segmentation of the hand image from

the background, hand rotation and translation, finding the

finger axes and tips, removal of ring artifacts, completion of the

wrist, estimation of finger pivots (metacarpal–phalanx joints),

rotation and translation of fingers to standard orientations.
These steps are pictured in the block diagram in Fig. 2 and are

described below.

2.1. Hand segmentation

Image capturing devices (scanner or digital camera) yield

basically a two-class image, with hand texture in the

foreground and a darker background. We start with the two-

class K-means clustering algorithm, followed by morphologi-

cal operators to fill in holes and remove isolated foreground

debris [15]. Thus, size filtering is applied on the connected

components of the image to remove spurious components in

the background, and then repeat this operation on the video

reverse image to remove background holes in the hand region.

These two steps satisfactorily separate and extract the hand

from the background. Finally, we apply a ‘ring artifact

removal’ algorithm [16] to correct for any straights or

isthmuses caused by the presence of rings. The outcome is a

binary image corresponding to the silhouette of the hand

(Fig. 2a–b).

2.2. Initial hand registration

Hand images are first subjected to a global rotation and

translation. This coarse registration involves translation of the

centroid of the binary hand mass and its rotation in the direction

of the larger eigenvector of the inertia matrix [17]. The inertia

matrix can be envisioned as an ellipse fitted to the connected

component of the hand object, where the larger eigenvalue

determines the hand orientation and corresponds to the major axis

of the ellipse. The sign ambiguity in the resulting eigenvector, i.e.

the problem of the sense of rotation, is resolved by considering

the relative shift in the centroid of the eroded hand image, since

loss of mass would be more rapid in the portion of fingers.

2.3. Finger tips and valleys

Hand extremities, i.e. the finger tips and the finger valleys

form fiduciary landmarks. A robust method to extract these

contour extremities consists in computing the radial distances

with respect to a reference point around the wrist region. This

reference point can be taken as the first intersection point of the

major axis (the larger eigenvector of the inertial matrix) with

the wrist line. The resulting sequence of radial distances yields

minima and maxima corresponding to the sought extremum

points. Since the resulting extrema are very stable, the

definition of the five maxima (fingertips) and of the four

minima are not easily affected by segmentation artifacts on the

contour. The radial distance function and a typical hand

contour with extremities marked on it are given in Fig. 2e.

2.4. Wrist completion

The hand contours in the wrist region can be irregular and

noisy due to clothing occlusion or due to the different angles

that the forearm can make with the platen, and due to the

varying pressure exerted on the imaging device. These factors



Fig. 1. Images of the left hand of a subject in different postures.
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generate different wrist contours in every session, which can

adversely affect the recognition rate. In order to create

consistently a smooth wrist contour for every hand image,

we tried two approaches to synthesize a wrist boundary. The

first approach is a curve completion algorithm called the Euler

spiral [16,18]. In the second approach, the hand was guillotined

at some latitude, i.e. a straight line connected the two sides of

the palm. It turned out that tapering off the wrist region with a

cosinusoidal window starting from the half distance between

the pivot line and the wrist line was the most effective approach

in appearance-based recognition and verification tasks

(Fig. 2i). In this operation, the wrist line is defined as the

horizontal line passing through the estimated thumb pivot on

the globally rotated hand image.
2.5. Finger pivots

As a deformable organ, hand can exhibit a large range of

variations due different orientations of fingers. Thus, even after

the re-positioning of the hand along its principal orientation

axis and on its center of mass, matching scores between hands
of the same person captured in different sessions still remain

low if the fingers are not exactly aligned (Fig. 2g). In this

context, the posture normalization of the hands consists of

reorientation of fingers along predetermined directions and

around their metacarpal–phalanx pivots or finger pivots.

Notice that the finger pivots are located inside the palm at

the knuckle positions, and are not directly observable. The

accurate estimate of these pivots is crucial for reliable finger

pose registration. For this purpose, we use two pieces of

information: first, we know that the pivot must lie on the finger

principal axis, which in turn is given by the major eigenvector

of the finger’s inertial matrix [17]. Secondly, hand anatomy

suggests that, once a prototypical hand with correct pivot

locations has been established, the pivots of other hands can be

approximated fairly accurately by a scaling transformation.

Let xi,proto, iZ1,., 5 denote the accurately known pivot

coordinates of the fingers of a hand, called the proto-hand.

When these coordinates are subjected to a scaling transform-

ation based on the actual size measurement of the hand, we

obtain xi,scale. Finally, each finger pivot is separately corrected

as detailed below, yielding xi,actual and hopefully,



Fig. 2. Processing steps for hand normalization: (a) original hand image; (b) segmented hand image; (c) illumination corrected hand image (ring removed); (d) gray-

scale, texture enhanced hand image; (e) determination of finger tips and valleys; (f) initial global registration by translation and rotation: middle finger length and

palm width for hand image scaling and derivation of the metacarpal pivots; (g) superposed contours taken from different sessions of the same individual with rigid

hand registration only; (h) superposed contours taken from different sessions of the same individual after finger orientation normalization; (i) final gray-scale,

normalized hand with cosine-attenuated wrist.
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xi,actualzxi,true for each finger index i. Thus, the pivot updates

go through the modifications xproto/xscale/xactual, which are

successive steps to approximate xtrue, and where the finger

indices i have been omitted for simplicity. We use the finger

valley between middle and ring fingers as a reliable and easy

computable coordinate origin of the actual hand, and denote it

as, xref. In Fig. 3, we mark generically a finger tip and a true
(but hidden) pivot point with F and TZxtrue, respectively. The

two stages for the estimation of finger pivots are as follows:
2.5.1. Scaling transformation of prototypical pivots

The positions of the proto-pivots are adapted using the size

information of the actual hand and this is realized by a linear

transformation xscaledZSxprotoCxref, where S is a scaling



Fig. 3. (a) xscale Projected orthogonally onto two instances of finger axes resulting in different amounts of error; (b) geometry to determine projection angle b to

minimize tip-to-pivot length estimation error. The palm horizontal line becomes a reference for the angle measurement, and it is the horizontal line passing through

the scaled pivot on the globally rotated hand image.
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transformation. The most reliable hand scale data, with the

smallest intra-class spread, is obtained as the length of middle

finger (tip-to-valley) and the mean width of the palm, as

illustrated in Fig. 2f. Both of these dimensions can be measured

accurately, and they give the notion of the longitudinal and

latitudinal scale of the hand. The transform coefficients in the

diagonal of the matrix, S, are given by the ratio of the lengths, l,

of the actually measured and prototypical middle fingers, i.e.

S11Zlactual/lproto, and the ratio of the respective palm widths, w,

S22Zwactual/wproto.

2.5.2. Per finger correction of pivots

The estimated pivots found after scaling transformation may

not fall right on the actual finger axis, i.e. xscalesxtrue. Though the

true pivot is not directly observable, an indication of a possible

mismatch is given by the fact that xscale does not lie on the finger

axis. A trivial solution would be to project xscale orthogonally onto

the finger axis, as illustrated in Fig. 3a. Fig. 3a shows the

projections of xscale onto fingers axis in two different orientations,

yielding, respectively, estimates P1Zx1
actual and P2Zx2

actual

(notice that the position xscale in this figure is shown grossly in

error vis-à-vis xtrue for illustration purposes). The point we want to

make is that this first order approximation via orthogonal

projection does not always lead to satisfactory solution especially

when there exist large finger orientation variations among

different imaging sessions. What we are seeking is a projection

from xscale onto the finger axis that causes the least variation in the

tip-to-pivot (F-to-xactual) length estimate of the finger. Under the

assumption that the fingers can sway between the extreme angles

a1Zaright anda2Zaleft [19] with uniform distribution (angles are

measured with respect to the horizontal line as shown in Fig. 3),

we can find the projection angle b (not necessarily orthogonal)
(see Fig. 3b) that minimizes the variance in the estimate of the

length when the finger is allowed to sway between its extreme

postures.

In Fig. 3b, the sector (aleft, aright), within which the finger

can sway with respect to the palm, is indicated with shading.

We seek a projection angle b for xscale onto the observed

finger axis, such that the variance of the estimated finger length

can be minimized. The finger length is estimated to be

jFxactualjzjFxtruej, as measured from the projected pivot xactual
to the finger tip F. In Appendix A, we show that the variance-

minimizing projection angle is bZ ðpKarightKaleftÞ=2 for-

mula. The final result is shown in Fig. 2h.

2.6. Enhancement of texture component

The appearance data has two components: hand shape, as

given by its silhouette, and hand texture. We intend to base hand

biometric information not only on the global shape of the hand,

but also on its texture. The hand texture is constituted by the

wrinkles and crevices in the palm as well as at and around the

finger articulations. The inclusion of the hand texture information

demands a number of preprocessing steps. First, we render the

hand monochromatic by choosing the principal component color

with the largest variance (Fig. 2c). Second, we compensate for the

artifacts due to the nonuniform pressure of the hand applied on the

platen of the imaging device, which causes spurious gray-level

variations due to withdrawal of the blood from capillaries. An

example of this pressure artifact can be observed around the

thumb metacarpal mount on the palm. These artifacts are

typically low-pass in that they form gross whitish blobs, hence

can be easily removed by high-pass filtering. In particular, since

on any scan line, we search for jump features (palm lines) at



E. Yörük et al. / Image and Vision Computing 24 (2006) 483–497488
relatively higher frequencies, we can extract them by high-pass

filtering (Fig. 2c and d). The image was smoothed with a Gaussian

kernel (kernel window size is 20!20 and filter aperture, standard

deviation of Gaussian, is sZ5) and subtracted from the original

image. Thus, these two steps of choosing principal component

color and then its high-pass filtering constitute the color

normalization of the hand.
2.7. Texture blending with finger registration

If texture is to be used as a discriminating feature, one must

compensate for the plastic deformation of the knuckle region of

the palm ensuing from each finger’s rotation around its

metacarpal joint, the xactual pivot discussed in Section 2.5. In
Fig. 4. (a) Color normalized and high-pass filtered hand with original pose; thin whi

(b) Palm and a rotated finger (index) before blending. (c) Superposed contours of the

registered hand with finger registered to the standard orientation and attached with
other words, the texture around the pivot of a rotated finger

should be carefully blended with the palm region, from which

it was extracted. Since the pivot is some 20% of the finger’s

length inside the palm (Fig. 4), the whole 120% of the finger

segment is extracted (100% visible finger C20% inside the

palm), rotated and re-attached using texture blending. Fig. 4

illustrates attachments of the finger to the palm without texture

blending and with texture blending.

The texture blending is effected by a linear combination of

the pixel value of the rotated finger and the palm pixel at the

corresponding position. The combiner ratio favors palm pixel if

the position is deep inside the palm as it will be less subject to

rotation. In contrast, it favors finger pixel if it is close to the

phalanx. The weights are constituted as distance proportions,
te borderlines indicate extracted fingers with their extensions inwards the palm.

palm and of the index finger. Their common region is shown shaded. (d) Finger

texture blending.
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where the distances are the corresponding closest distances to

the boundaries (geometry illustrated in Fig. 4). A pixel

position, (i,j), common to both finger and palm regions, has

the blended intensity

Iblendði;jÞZwfingerði;jÞIfingerði;jÞCwpalmði;jÞIpalmði;jÞ

where the weights are defined as

wfingerði;jÞZ
dfingerði;jÞ

dfingerði;jÞCdpalmði;jÞ
and

wpalmði;jÞZ
dpalmði;jÞ

dfingerði;jÞCdpalmði;jÞ

such that dfinger(i,j) and dpalm(i,j) are the closest distances of

(i,j)th pixel to the boundary of the finger and palm segments,

respectively (see inset in Fig. 4).
Fig. 5. (a) Various hands in the database, some with rings. (b) The registered hand

texture. (d) The 100!100 pixel excerpt from the palm region.
In order to blend judiciously silhouette-based shape

information with the texture, we scale the texture information

with a weighting factor. In other words, we adjust the

contribution of the texture component by tuning its standard

deviation. If this tuning parameter is set to one, we have the

original hand appearance data, i.e. texture and shape (texture

after color normalization). As this parameter is reduced toward

zero, we use more of the silhouette and less of the texture.

When the tuning parameter is set to zero, we rely solely on the

silhouette data and exclude all texture information (Fig. 5).
3. Feature extraction

We have considered comparatively several features that

extract either pure shape information or shape information in

addition to the texture information. The features that apply to
s with color normalized texture. (c) Details of the central portion of the palm
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shape only are independent component analysis (ICA) features,

principal component analysis (PCA) features, axial radial

transform (ART) and distance transform (DT). In a previous

study, we had considered weighted Haussdorff distance as well,

but we have excluded it from the competition as its

performance falls short of ICA [16]. On the other hand, the

features extracting information from both shape and texture are

the ICA, PCA and ART schemes.

3.1. Principal component analysis features [20,21]

Let us represent the hand contour vector of length 2n as zZ
(cx(1),., cx(n), cy(1),., cy(n))T where n is the number of

points of the hand contour and (cx(i),cy(i)) are the 2D

coordinates of the ith point on the contour. We first establish

the nine fiduciary reference points. We first establish 11

fiduciary reference points, consisting of the first and last

contour elements, the five finger tips and the four finger

valleys, and then resample the contour data in order to

guarantee correspondence between contour elements of all

hands. The number of samples between two landmark points is

kept equal for all hands; hence the sampling step sizes differ

proportionally to the hand size and shape. Fig. 6 gives the

number of contour elements chosen between landmarks of the

hand. Notice that we exclude from the contour the horizontal

line above the wrist.

The covariance matrix C of the contour vectors is

constructed as

CZ
1

sK1

Xs

iZ1

ðziK~zÞðziK~zÞT

using the s sample hands, and where ~z is the mean contour

vector. The eigenvectors, {vi} of the covariance matrix sorted

in decreasing order with respect to the corresponding

eigenvalues, {li} model the variations in the training set. If

V contains the M eigenvectors corresponding to the largest

eigenvalues, then any shape vector in the training set can be

approximated as zy ~zCVb, where VZ[v1v2/vM] is the

selected eigenspace basis set and b is the projection of shape z

to this eigenspace, i.e. bZVTðzK~zÞ. The vector b serves as the
29 
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Fig. 6. The number of contour elements chosen between landmarks of the hand.
feature vector of length M of a hand contour in the matching

stage.

Fig. 7 shows the effect of varying the first 10 modes of b,

one at a time. The shapes in this figure are obtained by

summing a perturbed nth eigenvector with the mean shape

vector. The perturbations are exaggerated intentionally to make

the effect of the corresponding mode more visible. A comment

is added below each figure inset related to the major visible

effect of eigenvalue perturbation, though especially for higher

eigenvalues, multiple effects can occur.
3.1.1. PCA of hand appearance

The hand texture information can also be expressed via the

principal component analysis. We have followed Coote’s

method [21] to decouple texture information from shape. To

this effect each image is warped to make its landmarks match

with those of some mean shape. Thin-plate splines are used for

image warping as in Bookstein [22]. The resulting warped

texture information is then expressed as a 1D vector. Finally,

PCA is applied to the texture vectors of the training hand

examples to obtain modes of variation of the texture.

Let bh be the projection of a hand to the shape eigenspace

and bg the projection of the warped hand to the texture

eigenspace. The vector bZ[bh bg]
T serves as the feature vector

of the hand. The dimensions of both shape and texture

eigenspaces are important parameters and are optimized

through experimental work. The distance between two hands

are computed using a weighted sum of squared differences of

feature vector components. When matching is performed using

only shape information the distance between two feature

vectors, bk and bl, is:

Dðk;lÞZ
XM
iZ1

1ffiffiffiffi
li

p ðbki KbliÞ
2: (1a)

When matching is performed using shape and texture

information together, the distance is

Dðk;lÞZ
XM
iZ1

1ffiffiffiffiffiffi
lhi

p ðbkhiKblhiÞ
2 C

XN
iZ1

1ffiffiffiffiffiffi
lgi

p ðbkgiKblgiÞ
2: (1b)

where fbkhig
M
iZ1 are the M-dimensional shape features of the kth

hand, fblgig
N
iZ1 are the N-dimensional texture features of the lth

hand, and lhi and lgi are the ith eigenvalues obtained from PCA

of shape and texture vectors, respectively. The squared

difference of each feature is divided by the square root of the

feature variance as observed in the training set.
3.2. Independent component analysis features

The Independent Component Analysis (ICA) is a technique

for extracting statistically independent variables from a

mixture of them and it has found several applications in

feature extraction and person authentication tasks [23,24]. We

apply the ICA analysis tool alternatively on binary silhouette

images to extract and summarize prototypical shape



Fig. 7. Effect of varying the weights of the first ten eigenvectors.
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information as well as on the appearance data, which is shape

plus texture.

ICA assumes that each observed hand image, {x(k), kZ
1,., K} is a mixture of a set of N unknown independent source

signals si (iZ1,., N). Here, {x(k), kZ1,., K} results from the

lexicographic ordering of the image I(i,j) in the scene, which

has a total of K pixels. Notice also that, while in the PCA

analysis we had considered images resting only within the

contours of the hand, in the case of ICA, we consider the total

scene image, consisting of its foreground and background.

With xi and si, (iZ1,., N) forming the rows of the N!K

matrices X and S, respectively, we have the following mixture

model

XZAS (2a)

ŜZYZWX (2b)

where A is the matrix of mixing coefficients. The ICA

algorithm finds a linear transformation ŜZYZWX that
minimizes the statistical dependence between the hypothesized

independent sources si, (iZ1,., N).

There exist two possible architectures for ICA, called ICA1

and ICA2 [23], depending on whether one aims for independent

basis images or for independent mixing coefficients [23]. In a

previous study [16], we found that the ICA2 architecture yielded

superior performance. In the ICA2 architecture, the superposition

coefficients are assumed to be independent, but not the basis

images. In this model, we start with the transpose of the data

matrix,XT, and reduce its large dimensionality (typically number

of pixels[number of images or K[N) via a PCA stage. Thus,

we proceed by computing the eigenvectors of the K!K

covariance matrix CZ(1/N)XTX (actually it suffices to consider

the eigenvalues of the much smaller N!N matrix XXT), we

project the data vectors onto the M (M%N) largest eigenvalues

and obtain the reduced data matrix XT
reduced. The source and

mixing coefficients are then obtained using the FastICA

algorithm [25] using XT
reduced in Eq. (2b). The synthesis of a

hand in the data set from the superposition of hand ‘basis images’



Fig. 8. Hand pattern synthesis using ICA2 basis functions ai, iZ1,., N denote the N basis images, while the weighting coefficients S(n,i), iZ1,., N for the hand i

are statistically independent.
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is illustrated in Fig. 8. Notice that the columns of the estimated A

matrix are the basis in of this architecture, whereas the coefficients

in the corresponding column of the estimated source matrix are

the independent weights, constituting the feature vector to be

extracted.

Similarly, whenever we want to take into account the texture

of images in the ICA formalism, we consider the image I(i,j)

(foregroundCbackground), Ishape(i,j), the binary hand silhouette

(foreground set to 1 and background to 0), and finally Itexture(i,j),

the textured image, also normalized to (0,1) interval. The image

fed into the ICA2 algorithm is Iði;jÞZ Ishapeði;jÞCaItextureði;jÞ,

with the tuning factor 0%a%1. Matching between hands are

performed by comparing ICA basis vectors, for example, the

mean-square distance between hands k and l becomes:

Dðk;lÞZ
PM
iZ1

ðski KsliÞ
2. We have observed that increasing the

texture-to-shape ratio a, from 0 to 0.2, makes the performances

significantly better as expected, since discriminative texture starts

also to play a role together with the pure shape information.

However, for a beyond 0.5, we see a certain decrease in the

overall identification rate. This can be attributed to the irrelevant

skin texture other than palm prints, which becomes to appear

more for larger values of a.

The ICA2 algorithm parameters were as follows: the

number of pixels in the hand images was KZ40,000, the

number of subjects was NZ458, and finally the number of

features, M, used in the ICA2 architecture was 200 as it yielded

the best classification result. The texture–shape power ratio

was taken as 0.2%a%0.5.
3.3. Angular radial transform features [26,27]

Angular radial transform (ART) is a complex transform

defined on the unit disk. The basis functions Vnm(r,q) are

defined in polar coordinates as a product of two separable
Fig. 9. Real parts of AR
functions along the angular and radial directions:

Vnmðr;qÞZAmðqÞRnðrÞ; where AmðqÞZ
1

2p
expðjmqÞ and

RnðrÞZ
1 nZ 0

2 cosðpnrÞ ns0
:

(

Fig. 9 shows real parts of the ART basis functions. As can be

observed from this figure, with increasing order n, the basis

functions vary more rapidly in the radial direction, whereas the

order m expresses the variation in the angular direction.

The angular radial transform of an image f(r,q) in polar

coordinates is a set of ART coefficients {Fnm} of order n and m.

These ART coefficients can be derived as follows

Fnm Z

ð2p
0

ð1
0

V�
nmðr;qÞf ðr;qÞdr dq

and a set of N!M ART magnitude coefficients can be used as

features. Notice that, while in shape recognition, the ART

coefficients are normalized to jF00j in order to achieve scale

invariance; in our work we specifically make us of this

coefficient for discriminatory size information. After aligning

the hand images and placing them in a fixed-size image plane,

we take the center of the plane as the center of the unit disk.

Furthermore, each pixel location is converted to polar

coordinates and the radial coordinate is normalized with the

image size to have a value between 0 and 1.

We compute the ART coefficients both for the silhouette

(binary) hands as well as for the shape plus texture appearance

data, which includes palm and finger gray-level details.
T basis functions.
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3.4. Distance transform features [28]

In the shape-based retrieval of objects based on their 2D

views, as proposed by Funkhouser et al. [28] first, the distance

transform (DT) on the planar shape is calculated, and this is

followed by sampling of the DT surface with concentric circles

(Fig. 10). The 1D periodic mass (say, 1 for hand region, 0 for

background) on the circles is subjected to the discrete Fourier

transform (DFT) and a shape signature is obtained by considering

a selected number of low-order DFT magnitude coefficients.

Thus, these features are indexed both by the circle number and

DFT coefficient number. As in the case of ART features, the

center of the circles is positioned on the center of the plane. The

span of radii is constant for all hands. This feature applies

obviously only to the shape information, and not to the texture.
Fig. 10. (a and b) Contour of a hand and its distance transform defined on the plane.

circles. (e) Feature extraction: DFTs of the circular profile of the distance transform
Fig. 10a and b show the contour of a hand image and its

distance transform. Fig. 10c and d show, respectively, the

concentric circles drawn and the resulting profiles. Finally,

Fig. 10e illustrates the feature extraction scheme.
4. Hand-based person recognition and verification

performance

Let fi and fj be two hand images, and FiZ fFi;kg
K
kZ1, FjZ

fFj;kg
K
kZ1 be generic hand K-dimensional feature vectors. The

following hand distance metrics can be used: The L1 norm of

the difference of the feature vectors, the L2 norm of the

difference of the feature vectors, and the arc-cosine of the angle

between feature vectors, respectively, calculated as follows
(c and d) Concentric spheres on the distance transform and extracted profiles on

function and the selected coefficients.



Table 1

Identification performance of feature types with different number of selected

features (population size: 458)

Feature type Number of features

40 100 200 400

ICA_shape 94.32 97.67 98.4 97.31

ICA_appearance 95.41 98.25 99.49 99.36

PCA_shape 96.01 96.97 97.19 97.16

PCA_appearance 96.27 97.91 97.99 97.91

ART_shape 94.18 95.78 95.63 95.05

ART_appearance 95.92 97.38 97.67 97.60

Distance transform 93.38 95.49 95.71 95.99

Table 2

Identification performance of feature sets with increasing population size (best

feature dimension selected for each feature type)

Feature type Population size

40 (30 Ran-

dom exper-

iments)

100 (12 Ran-

dom exper-

iments)

200 (6 Ran-

dom exper-

iments)

458

ICA_shape 99.19 99.09 98.55 98.40

ICA_appearance 99.68 99.65 99.58 99.49

PCA_shape 98.67 98.69 98.56 97.19

PCA_appearance 99.14 98.89 98.72 97.99

ART_shape 98.72 97.78 97.00 95.78

ART_appearance 99.28 98.72 98.06 97.67

DT 99.17 98.22 96.22 95.99
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d1ðfi;fjÞZ
XK
kZ1

jFi;kKFj;kj; d2ðfi;fjÞZ
XK
kZ1

jFi;kKFj;kj
2;

dcosðfi;fjÞZ 1K
Fi$Fj

jjFijjjjFjjj
;

where $ is the inner product notation. Thus hand distances,

whether shape-based or shape plus texture-based, are measured

in terms of some norm of their feature vectors.

In identification mode, the user does not provide any

identity claim, but the system must find out the user’s identity

from a database of enrolled users. For person identification

task, we measure the distance between the test feature vector,

Ftest and all the feature vectors Fi, iZ1,., N in the database

belonging to N different subjects. The index of the hand giving

the minimum distance is selected as the identity of the input

hand, i.e. the person i� is identified if

i�Zarg minðiÞfdðFtest;FiÞg. Notice that there could be more

than one hand image stored per person, consequently the

number of comparisons amounts to the number of subjects

times the number of images per subject.

For a person verification task, one must differentiate the

‘genuine hand’ from the ‘impostor hands’ as the user provides

her hand image in support of her claimed identity. For this
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Fig. 11. Bar graph showing the performance attainable with every feature set.

Every feature set is optimized with respect to the feature dimensions.

Maximum population size is used, i.e. 458. Gray whiskers show the region

between the best performance and average performance with each feature set.
purpose, the distances between the hand of the applicant and all

the hands in the database are calculated and the scores

compared against a threshold. As we lower the acceptance

threshold on d(Ftest, Fi), the probability of detection increases

at the risk of increased false alarm, i.e. of accepting an impostor

as a genuine.

Table 1 and Fig. 11 show the experimental identification

performance of various feature types, as the number of feature

components grows, while Table 2 gives the variation of

performance scores as the population size increases. Several

observations can be made. First, all feature types benefit from

an increase in dimensionality, as they start from a modest size

of 40. For the population size of 458, all of them seem to have a

broad peak at an around dimension 200. Second, ICA features

applied on the hand appearance data are the best among all.

This holds both in the competition between shape-only

recognition and shape-plus-texture recognition. Thirdly, as

expected, the addition of texture information improves the

recognition performance. However, the improvement remains

around 1% for the ICA and PCA features and 2% for the ART

feature. Finally, as in Table 2, the population size grows an

order of magnitude from 40 to 458 all features suffer a

performance drop ranging from 1 to 3%. The only exception is

the ICA features on appearance data, where the performance

drop is only a meager 0.2%, which again points out to the

robustness of the ICA features. These results are obtained by

averaging the performance over several randomly chosen

subsets of populations, for example, over 30 different choices

of 40-tuple subsets, etc. as shown in the first row of Table 2.

Table 3 and Fig. 12 present the hand-based verification

results. Table 3 gives the correct verification percentages as a

function of population size. The main observations are parallel

to those for the identification case, namely: (i) the slow

performance drop with increasing population size, (ii) the

superiority of the ICA features, (iii) the less than 1%

contribution of the texture component to the shape only

recognition. Notice that the verification performances seem to

increase in row 2 of Table 3. Actually, while the number of

impostors that pass through increases, the population size

increase is more rapid than the growth in the false alarm rate.

Since both right and left hands were measured, we

computed the distribution of the distance between the ICA

feature vectors between the two hands of the same person. In



Table 3

Verification performance with feature sets with increasing population size

(every feature set optimized with respect to the number of selected features;

equal error rate results)

Feature type Population size

40 100 200 458

ICA_shape 97.49 98.97 99.41 99.45

1 Person 1 Person 1 Person 2.5 Person

ICA_appearance 97.94 98.93 99.49 99.74

PCA_shape 98.27 97.80 97.83 97.78

PCA_appearance 98.61 98.50 98.73 98.49

ART_shape 98.29 97.89 97.95 97.91

ART_appearance 97.50 97.28 97.36 97.51

DT 98.31 98.03 98.08 98.34

Fig. 12. ROC curves of ICA2 feature sets in hand-based person verification

experiments.

Table 4

Identification performance of ICA features with larger populations (best feature

dimension selected for each feature type)

Feature type Population size

500 600 756

ICA_shape 98.73 98.89 98.85

ICA_appearance 99.53 99.61 99.65
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Fig. 13, we show three distributions: The plots on the left side

are the ICA distances between the same side hand (right–right

or left–left) of the same subject as observed in different

sessions, i.e. intra-personal distances. The distribution in the

middle shows the ICA distances across the two hands of the
Fig. 13. Distance histograms: (a) intra-distances (left-to-left of the same

person). (b) Distances between left and right hands of the same person. (c)

Inter-distances (between left hands of different persons).
same subject, i.e. right–left or left–right. Finally, the

distribution on the right is the distances between the same-

side hands of different subjects, i.e. inter-personal distances.

One can observe that there is considerable difference between

the two hands of people. The ensuing differences, although less

than inter-personal differences, nevertheless is still sufficiently

large as not to enable mixed hand biometry, i.e. identify a

subject with the left (right) hand while enrolled with the right

(left) hand.

Since we have established that the Independent Component

Analysis features yield superior performance compared to all

others, we have conducted experiments on enlarged database

solely with ICA features. Tables 4 and 5 give the identification

and verification performances obtained by ICA features, when

the databases is scaled up to sizes 500, 600 and 756. It is

encouraging to observe that results show that the algorithm can

handle even larger databases without any noticeable perform-

ance degradation.

Finally, we compared the performance of our algorithm

with the available hand identification results in the literature. In

Table 6, we describe briefly the types of features used, the

population size and the comparative performance figures. A

more detailed summary of alternative algorithms is given in a

companion paper [16]. We can observe that our algorithm

outperforms all the available algorithms in the literature and its

performance remains stable over a large plateau of population

sizes.
5. Conclusion

An algorithm has been presented for hand-based biometry in

identification and recognition tasks. The very critical import-

ance of a proper registration that takes into account the

deformations not only in the shape but also in the texture of the

hand is shown. Note that although the hand undergoes strong

processing for geometrical correction, the texture is not

affected since the transformations are rigid. The only instance

when the texture might be affected is when the fingers are
Table 5

Verification performance of ICA features with larger populations (best feature

dimension selected for each feature type)

Feature type Population size

500 600 756

ICA_shape 99.69 99.68 99.72

ICA_appearance 99.86 99.83 99.86



Table 6

Comparison of the identification performance of our algorithm vis-à-vis the performance of competitor algorithms in the literature

Reference Algorithmic features Population size Performance of com-

petitor algorithms

Performance of our

algorithm

Reillo, Avila, and Marcos [5] Finger widths at different latitudes, finger and

palm heights, finger deviations and angles of

the inter-finger valleys

20 97.0 99.70

Öden, Erçil, and Büke [7] Hand geometry via finger widths at various

positions, palm size and finger geometry via

fourth degree implicit polynomials

35 95.0 99.68

Bulatov, Jambawalikar, Kumar,

and Sethia [6]

70 98.5 99.67

Kumar, Wong, Shen, and Jain

[14]

Hand geometry and palmprint information

with decision fusion

100 99.1 99.65

– 756 – 99.65
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rotated around their metacarpal joints. But for this case, we use

the texture interpolation and correction scheme, as detailed in

Fig. 4. Several feature schemes are comparatively evaluated,

and the Independent Component Analysis features are found to

perform uniformly superior to all other features considered.

The attained performance of 99.65% correct identification, and

of 99.86% EER verification for a population of 756 subjects is

very encouraging and it indicates that hand-biometric devices

can respond to the security requirements for populations of

several hundreds.

The work is continuing to assess the performance in a time

lapse of the order of months as well as for even larger

populations. The complementary role of hand biometry in a

multimodal is also being investigated.
6. Uncited reference

[27].
Appendix A

In this appendix, we derive the optimum angle b that

minimizes the variance of the positions of xactual. We can

simplify the geometry of the problem by shifting one of the

bounding axes, say the right one, towards the left, such that

they intersect at the point T 0 as shown in Fig. 5b. If we work

with the triangle P1TP2Zx
left
actualxtruex

right
actual, the length esti-

mation error becomes jxactualxtruej for any given projection

angle b. On the other hand, if we work with the triangle

P1T
0x0actual, the length estimation error becomes proportional to

jT 0x0actualj. Notice that the line T 0x0actual is parallel to the line

Txactual and also the two triangles are similar, hence

minimizing xactualT is tantamount to minimizing x0actualT
0 ,

since errors calculated from similar triangles are proportional

and we are only interested in minimizing the relative error.

If we focus on the ‘random’ triangle xscalex
0
actualT

0, from the

sine rule we have

x0actualT
0

sin b
Z

xscaleT
0

sinð2pKaKbÞ
Z

xscaleT
0

sinðaCbÞ
where cZxscaleT
0 is a deterministic constant, which is the

distance of the scaled pivot, xscale, to the leftmost position of

the finger axis. With this relation we can formulate the variance

of

x0actualT
0 Z

jxscaleT
0jsin b

sinðaCbÞ
;

as a function of b. Taking the expectations with respect to the

random variable a, we have:

Varfjx0actualT
0jgZ

c2sin2b

ða2Ka1Þ

ða2

a1

1

sin2ðaCbÞ
da

K
c sin b

ða2Ka1Þ

ða2

a1

1

sinðaCbÞ
da

2
64

3
75

2

This expression does not have a closed form minimum,

except for the trivial solution bZ0. However, gradient descent

schemes have shown the minimum is found at around the mean

finger orientation, i.e. bZ ðpKa1Ka2Þ=2. Thus, we use this

value of b to update the pivot position to xactual, and then the

finger is rotated to its predetermined orientation angle with

respect to this pivot.
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